Pico base #### É o pico mais intenso do espectro #### Pico do íon molecular É pequeno ou inexistente dependendo da molécula e do modo de ionização #### Formação e íons $$M + e^- \longrightarrow M^{\bullet +} + 2e^-$$ $$CH_4^{+\bullet} \to CH_3^+ + H^{\bullet}; m/z \ 16 \to m/z \ 15$$ $$CH_4^{+\bullet} \to CH_2^{+\bullet} + H_2; m/z 16 \to m/z 14$$ $$CH_2^{+\bullet} \to C^{+\bullet} + H_2; \ m/z \ 14 \to m/z \ 12$$ $$CH_2^{+\bullet} \to CH^+ + H^{\bullet}; m/z 14 \to m/z 13$$ $$CH_3^+ \to CH^+ + H_2; \ m/z \ 15 \to m/z \ 13$$ #### Main isotopes of iodine (531) 60 80 20 40 lodine fission-produced isotopes not discussed above (iodine-128, iodine-130, iodine-132, and iodine-133) have a half lives of a couple of $$M^{+} = 142$$ m/z 15 127 u 15 u m/z 127 14 u m/z 128 11 HI+· ## Regra de Stevenson Quando a fragmentação acontece, a carga positiva tende a ficar sobre o fragmento com menor energia de ionização. #### UFRJ #### Energias de ionização É mais fácil manter a carga positiva distribuída em cadeias mais substituídas, mais ramificadas. Compare para a acetona Melhor formar CH₃C=O⁺ | Radical | IE ^b [eV] | Radical | IE ^b [eV] | |---|----------------------|----------------------------------|----------------------| | H• | 13.6 | CH ₃ O [•] | 10.7 | | CH ₃ | 9.8 | *CH ₂ OH | 7.6 | | $^{\bullet}C_2H_5$ | 8.4 | $CH_3C'=0$ | 7.0 | | <i>n</i> - ° C ₃ H ₇ | 8.2 | $C_2H_5C^{\bullet}=O$ | 5.7 | | <i>i</i> - ° C ₃ H ₇ | 7.6 | *CH ₂ Cl | 8.8 | | <i>n</i> - ° C ₄ H ₉ | 8.0 | *CCl ₃ | 8.1 | | <i>i-</i> C ₄ H ₉ | 7.9 | C_6H_5 | 8.3 | | <i>s</i> - ° C ₄ H ₉ | 7.3 | $C_6H_5CH_2$ | 7.2 | | t-*C ₄ H ₉ | 6.8 | *CH ₂ NH ₂ | 6.3 | # Exercícios (α-clivagem) Universidade Federal do Rio de Janeiro **2**9 u m/z 43 Universidade Federal do Rio de Janeiro UFRJ # Exercícios – Complete a tabela | Number of nitrogens | Examples | M ^{+•} at | m/z | |---------------------|--|--------------------|-----| | | methane, CH ₄ | | | | | acetone, C ₃ H ₆ O | | | | | chloroform, CHCl ₃ | | | | | [60]fullerene, C ₆₀ | | | | | ammonia, NH ₃ | | | | | acetonitrile, C ₂ H ₃ N | | | | | pyridine, C ₅ H ₅ N | | | | | N-ethyl-N-methyl-propanamine, C ₆ H ₁₅ N | | | | | urea, CH ₄ N ₂ O | | | | | pyridazine, C ₄ H ₄ N ₂ | | | | | triazole, C ₂ H ₃ N ₃ | | | | | hexamethylphosphoric triamide, HMPTA, C ₆ H ₁₈ N ₃ OP | | | # Exercícios – Complete a tabela | Number of nitrogens | Examples | $M^{+\bullet}$ at m/z | |---------------------|--|-------------------------| | 0 | methane, CH ₄ | 16 | | 0 | acetone, C ₃ H ₆ O | 58 | | 0 | chloroform, CHCl ₃ | 118 | | 0 | [60]fullerene, C ₆₀ | 720 | | 1 | ammonia, NH ₃ | 17 | | 1 | acetonitrile, C ₂ H ₃ N | 41 | | 1 | pyridine, C ₅ H ₅ N | 79 | | 1 | <i>N</i> -ethyl- <i>N</i> -methyl-propanamine, C ₆ H ₁₅ N | 101 | | 2 | urea, CH ₄ N ₂ O | 60 | | 2 | pyridazine, C ₄ H ₄ N ₂ | 80 | | 3 | triazole, C ₂ H ₃ N ₃ | 69 | | 3 | hexamethylphosphoric triamide, HMPTA, C ₆ H ₁₈ N ₃ OP | 179 | | m/z (33 + 14n) | Sulfonium ions $[C_nH_{2n+1}S]^+$ | Accurate mass [u] ^a | |----------------|-----------------------------------|--------------------------------| | 47 | CH ₃ S ⁺ | 46.9950 | | 61 | $C_2H_5S^+$ | 61.0106 | | 75 | $C_3H_7S^+$ | 75.0263 | | 89 | $C_4H_9S^+$ | 89.0419 | | 103 | $C_5H_{11}S^+$ | 103.0576 | | 117 | $C_6H_{13}S^+$ | 117.0732 | | 131 | $C_7H_{15}S^+$ | 131.0889 | | 145 | $C_8H_{17}S^+$ | 145.1045 | Proponha o mecanismo de fragmentação, explique o pico 56 UFRJ **31** **32** Universidade Federal do Rio de Janeiro $\Delta H_{\rm f} = 866 \text{ kJ mol}^{-1} 887 \text{ kJ mol}^{-1}$ 971 kJ mol⁻¹ 987 kJ mol⁻¹ 992 kJ mol⁻¹ Table 6.11 Commonly observed neutral losses from molecular ions | $[M-X]^+$ | Radicals | $[M-XY]^{+\bullet}$ | Molecules | |----------------|--|---------------------|---| | -1 | Н. | -2 | H_2 | | -15 | CH ₃ · | -4 | $2 \times H_2$ | | -16 | NH ₂ *, O* | -17 | NH ₃ | | -17 | OH. | -18 | H ₂ O | | -19 | F* | -20 | HF | | -29 | C_2H_5 | -27 | HCN | | -31 | OCH ₃ · | -28 | $CO, C_2H_4, (N_2)$ | | -33 | SH. | -30 | $H_2C=O$, NO | | -35 | Cl. | -32 | $CH_3OH, H_2S, (O_2)$ | | -43
-45 | C ₃ H ₇ °, CH ₃ CO° | -34 | H_2S | | -45 | OC ₂ H ₅ *, COOH* | -36 | HC1 | | -57 | C ₄ H ₉ · | -42 | C_3H_6 , $H_2C=C=O$ | | -79 | Br* | -44 | CO ₂ | | -91 | C_7H_7 | -46 | C ₂ H ₅ OH, NO ₂ | | -127 | I, | -60 | CH ₃ COOH | # McLafferty rearrangement # McLafferty rearrangement Find the absorbance and transmittance of a 0.002~40~M solution of a substance with a molar absorptivity of $313~M^{-1}~cm^{-1}$ in a cell with a 2.00-cm pathlength. Ache a absorbância e a transmitância para uma solução 0,00240M e absortividade molar de 313M⁻¹ cm⁻¹ em uma célula de caminho ótico de 2cm 17-A. (a) What value of absorbance corresponds to 45.0% T? - (b) The absorbance of an unknown solution of compound A in the same solvent and cuvet was 0.375 at 238 nm. Find the concentration of A in the unknown. - (c) A concentrated solution of compound A in the same solvent was diluted from an initial volume of 2.00 mL to a final volume of 25.00 mL and then had an absorbance of 0.733. What is the concentration of A in the concentrated solution? - 17-1. Fill in the blanks. - (a) If you double the frequency of electromagnetic radiation, you _____ the energy. - (b) If you double the wavelength, you _____ the energy. - (c) If you double the wavenumber, you _____ the energy. - 17-2. (a) How much energy (in kilojoules) is carried by one mole of photons of red light with $\lambda = 650$ nm? - (b) How many kilojoules are carried by one mole of photons of violet light with $\lambda = 400$ nm? - 17-3. Calculate the frequency (Hz), wavenumber (cm⁻¹), and energy (J/photon and J/[mol of photons]) of visible light with a wavelength of 562 nm. - 17-4. Which molecular processes correspond to the energies of microwave, infrared, visible, and ultraviolet photons? - 17-5. Characteristic orange light produced by sodium in a flame is due to an intense emission called the sodium D line, which is actually a doublet, with wavelengths (measured in vacuum) of 589.157 88 and 589.755 37 nm. The index of refraction of air at a wavelength near 589 nm is 1.000 292 6. Calculate the frequency, wavelength, and wavenumber of each component of the D line, measured in air. - 17-1. Fill in the blanks. - (a) If you double the frequency of electromagnetic radiation, you _____ the energy. - (b) If you double the wavelength, you _____ the energy. - (c) If you double the wavenumber, you _____ the energy. - 17-2. (a) How much energy (in kilojoules) is carried by one mole of photons of red light with $\lambda = 650$ nm? - (b) How many kilojoules are carried by one mole of photons of violet light with $\lambda = 400$ nm? - 17-3. Calculate the frequency (Hz), wavenumber (cm⁻¹), and energy (J/photon and J/[mol of photons]) of visible light with a wavelength of 562 nm. - 17-4. Which molecular processes correspond to the energies of microwave, infrared, visible, and ultraviolet photons? - 17-5. Characteristic orange light produced by sodium in a flame is due to an intense emission called the sodium D line, which is actually a doublet, with wavelengths (measured in vacuum) of 589.157 88 and 589.755 37 nm. The index of refraction of air at a wavelength near 589 nm is 1.000 292 6. Calculate the frequency, wavelength, and wavenumber of each component of the D line, measured in air. 17-11. The absorbance of a 2.31×10^{-5} M solution of a compound is 0.822 at a wavelength of 266 nm in a 1.00-cm cell. Calculate the molar absorptivity at 266 nm. **UFRI** 17-12. What color would you expect to observe for a solution of Fe(ferrozine) $_3^{4-}$, which has a visible absorbance maximum at 562 nm? 17-16. A compound with molecular mass 292.16 g/mol was dissolved in a 5-mL volumetric flask. A 1.00-mL aliquot was withdrawn, placed in a 10-mL volumetric flask, and diluted to the mark. The absorbance at 340 nm was 0.427 in a 1.000-cm cuvet. The molar absorptivity at 340 nm is $\varepsilon_{340} = 6 \ 130 \ \text{M}^{-1} \ \text{cm}^{-1}$. - (a) Calculate the concentration of compound in the cuvet. - (b) What was the concentration of compound in the 5-mL flask? - (c) How many milligrams of compound were used to make the 5-mL solution? **UFRI**