Espectrometria de Massas

• Espectrometria de massas é a técnica analítica que estuda as massas ^{UFRJ} de átomos ou moléculas ou de fragmentos de moléculas.

1. Tabela Periódica dos elementos

IA																	VIIIA
1														2			
Н		Atomic number→ 6												He			
Hydroger	n IIA	Symbol → C													Helium		
1.0079 3	4	Name (IOPAC) -> Carbon											4.0026				
	-																
Lithium	Be Beryllium											B	Carbon	Nitrogon	O	F	Ne
6.941	9.0122		Boron Carbon Nitrogen Oxygen Fluorine Neor 10.811 12.011 14.007 15.999 18.998 20.18											20.180			
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	Р	S	CI	Ar
Sodium	Magnesium											Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon
22,990	24.305	04	00	00	0.4	0.5	00	07	00	00	20	26.982	28.086	30.974	32.065	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassiun 39.098	m Calcium 40.078	Scandium 44.956	Titanium 47.867	Vanadium 50.942	Chromium 51.996												Krypton 83.798
						Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
39.098 37	40.078	44.956	47.867 40	50.942 41	51.996 42	Manganese 54.938	Iron 55.845 44	Cobalt 58.933	Nickel 58.693	Copper 63.546	Zinc 65.409 48	Gallium 69.723	Germanium 72.64 50	Arsenic 74.922 51	Selenium 78.96 52	Bromine 79.904	Krypton 83.798
39.098 37 Rb Rubidium	40.078 38 Sr Strontium	44.956 39 Y Yttrium	47.867 40 Zr Zirconium	50.942 41 Nb Niobium	51.996 42 Mo Molybdenum	Manganese 54.938 43 TC Technetium	Iron 55.845 44 Ru Ruthenium	Cobalt 58.933 45 Rh Rhodium	Nickel 58.693 46 Pd Palladium	Copper 63.546 47 Ag Silver	Zinc 65.409 48 Cd Cadmium	Gallium 69.723 49 In Indium	Germanium 72.64 50 Sn Tin	Arsenic 74.922 51 Sb Antimony	Selenium 78.96 52 Te Tellurium	Bromine 79.904 53 I lodine	Krypton 83.798 54 Xe Xenon
39.098 37 Rb Rubidium 85.468	38 Sr Strontium 87.62	44.956 39 Y Yttrium 88.906	47.867 40 Zr Zirconium 91.224	50.942 41 Nb Niobium 92.906	51.996 42 Mo Molybdenum 95.94	Manganese 54.938 43 TC Technetium (98)	1ron 55.845 44 Ru Ruthenium 101.07	Cobalt 58.933 45 Rh Rhodium 102.91	Nickel 58.693 46 Pd Palladium 106.42	Copper 63.546 47 Ag Silver 107.87	Zinc 65.409 48 Cd Cadmium 112.41	Gallium 69.723 49 In Indium 114.82	Germanium 72.64 50 Sn Tin 118.71	Arsenic 74.922 51 Sb Antimony 121.76	Selenium 78.96 52 Te Tellurium 127.60	53 lodine 126.90	54 Xe Xenon 131.29
39.098 37 Rb Rubidium 85.468 55	40.078 38 Sr Strontium 87.62 56	44.956 39 Y Yttrium 88.906 57	47.867 40 Zr Zirconium 91.224 72	50.942 41 Nb Niobium 92.906 73	51.996 42 Mo Molybdenum 95.94 74	Manganese 54.938 43 TC Technetium (98) 75	Iron 55.845 44 Ru Ruthenium 101.07	Cobalt 58.933 45 Rh Rhodium 102.91	Nickel 58.693 46 Pd Palladium 106.42 78	Copper 63.546 47 Ag Silver 107.87	Zinc 65.409 48 Cd Cadmium 112.41 80	Gallium 69.723 49 In Indium 114.82 81	Germanium 72.64 50 Sn Tin 118.71 82	Arsenic 74.922 51 Sb Antimony 121.76 83	\$elenium 78.96	85 Bromine 79.904	Krypton 83.798 54 Xe Xenon 131.29 86
39.098 37 Rb Rubidium 85.468 55 Cs	38 Sr Strontium 87.62 56 Ba	39 Y Yttrium 88.906 57 La	47.867 40 Zr Zirconium 91.224 72 Hf	41 Nb Niobium 92.906 73	51.996 42 Mo Molybdenum 95.94 74 W	Manganese 54.938 43 TC Technetium (98) 75 Re	Iron 55.845 44 Ru Ruthenium 101.07 76 Os	Cobalt 58.933 45 Rh Rhodium 102.91 77 Ir	Nickel 58.693 46 Pd Palladium 106.42 78 Pt	Copper 63.546 47 Ag Silver 107.87 79 Au	Zinc 65.409 48 Cd Cadmium 112.41 80 Hg	Gallium 69.723 49 In Indium 114.82 81	Germanium 72.64 50 Sn Tin 118.71	Arsenic 74.922 51 Sb Antimony 121.76 83 Bi	\$\text{Selenium} \text{78.96}\$ 52 Te Tellurium 127.60 84 Po	53 lodine 126.90 85 At	54 Xe Xenon 131.29 86 Rn
39.098 37 Rb Rubidium 85.468 55	40.078 38 Sr Strontium 87.62 56	44.956 39 Y Yttrium 88.906 57	47.867 40 Zr Zirconium 91.224 72	50.942 41 Nb Niobium 92.906 73	51.996 42 Mo Molybdenum 95.94 74	Manganese 54.938 43 TC Technetium (98) 75	Iron 55.845 44 Ru Ruthenium 101.07	Cobalt 58.933 45 Rh Rhodium 102.91	Nickel 58.693 46 Pd Palladium 106.42 78	Copper 63.546 47 Ag Silver 107.87	Zinc 65.409 48 Cd Cadmium 112.41 80	Gallium 69.723 49 In Indium 114.82 81	Germanium 72.64 50 Sn Tin 118.71 82	Arsenic 74.922 51 Sb Antimony 121.76 83	\$elenium 78.96	85 Bromine 79.904	Krypton 83.798 54 Xe Xenon 131.29 86
39.098 37 Rb Rubidium 85.468 55 Cs Cesium	40.078 38 Sr Strontium 87.62 56 Ba Barium	44.956 39 Y Yttrium 88.906 57 La Lanthanum	47.867 40 Zr Zirconium 91.224 72 Hf Hafnium	50.942 41 Nb Niobium 92.906 73 Ta Tantalum	51.996 42 Mo Molybdenum 95.94 74 W Tungsten	Manganese 54.938 43 TC Technetium (98) 75 Re Rhenium	Iron 55.845 44 Ru Ruthenium 101.07 76 Os Osmium	Cobalt 58.933 45 Rh Rhodium 102.91 77 Ir Iridium	Nickel 58.693 46 Pd Palladium 106.42 78 Pt Platinum	Copper 63.546 47 Ag Silver 107.87 79 Au Gold	Zinc 65.409 48 Cd Cadmium 112.41 80 Hg Mercury	Gallium 69.723 49 In Indium 114.82 81 TI Thallium	Germanium 72.64 50 Sn Tin 118.71 82 Pb Lead	Arsenic 74.922 51 Sb Antimony 121.76 83 Bi Bismuth	Selenium 78.96 52 Te Tellurium 127.60 84 Po Polonium	53 I lodine 126.90 85 At Astatine	Krypton 83.798 54 Xe Xenon 131.29 86 Rn Radon
39.098 37 Rb Rubidium 85.468 55 Cs Cesium 132.91	40.078 38 Sr Strontium 87.62 56 Ba Barium 137.33 88	44.956 39 Y Yttrium 88.906 57 La Lanthanum 138.91 89	47.867 40 Zr Zirconium 91.224 72 Hf Hafnium 178.49 104	50.942 41 Nb Niobium 92.906 73 Ta Tantalum 180.95 105	51.996 42 MO Molybdenum 95.94 74 W Tungsten 183.84 106	Manganese 54.938 43 TC Technetium (98) 75 Re Rhenium 186.21	Iron 55.845 44 Ru Ruthenium 101.07 76 Os Osmium 190.23 108	Cobalt 58.933 45 Rh Rhodium 102.91 77 Ir Iridium 192.22 109	Nickel 58.693 46 Pd Palladium 106.42 78 Pt Platinum 195.08	Copper 63.546 47 Ag Silver 107.87 79 Au Gold 196.97	Zinc 65.409 48 Cd Cadmium 112.41 80 Hg Mercury 200.59 112	Gallium 69.723 49 In Indium 114.82 81 TI Thallium	Germanium 72.64 50 Sn Tin 118.71 82 Pb Lead 207.2	Arsenic 74.922 51 Sb Antimony 121.76 83 Bi Bismuth	Selenium 78.96 52 Te Tellurium 127.60 84 Po Polonium	53 I lodine 126.90 85 At Astatine	Krypton 83.798 54 Xe Xenon 131.29 86 Rn Radon
39.098 37 Rb Rubidium 85.468 55 Cs Cesium 132.91	40.078 38 Sr Strontium 87.62 56 Ba Barium 137.33 88 Ra	44.956 39 Y Yttrium 88.906 57 La Lanthanum 138.91	47.867 40 Zr Zirconium 91.224 72 Hf Hafnium 178.49	50.942 41 Nb Niobium 92.906 73 Ta Tantalum 180.95	51.996 42 Mo Molybdenum 95.94 74 W Tungsten 183.84	Manganese 54.938 43 TC Technetium (98) 75 Re Rhenium 186.21	Iron 55.845 44 Ru Ruthenium 101.07 76 Os Osmium 190.23	Cobalt 58.933 45 Rh Rhodium 102.91 77 Ir Iridium 192.22	Nickel 58.693 46 Pd Palladium 106.42 78 Pt Platinum 195.08	Copper 63.546 47 Ag Silver 107.87 79 Au Gold 196.97	Zinc 65.409 48 Cd Cadmium 112.41 80 Hg Mercury 200.59 112	Gallium 69.723 49 In Indium 114.82 81 TI Thallium	Germanium 72.64 50 Sn Tin 118.71 82 Pb Lead 207.2	Arsenic 74.922 51 Sb Antimony 121.76 83 Bi Bismuth	Selenium 78.96 52 Te Tellurium 127.60 84 Po Polonium	53 I lodine 126.90 85 At Astatine	Krypton 83.798 54 Xe Xenon 131.29 86 Rn Radon

Átomos

Nuvem eletrônica

Núcleo

Átomos consistem de um núcleo denso e positivamente carregado, contendo prótons e neutros, rodeado por uma nuvem eletrônica contendo elétrons negativamente carregados.

Partículas fundamentais

Número atômico (Z) \rightarrow **6**Símbolo \rightarrow **C**Nome (IUPAC) \rightarrow Carbon
Massa atômica (A) \rightarrow 12.011

A quantidade de *neutrons* no núcleo pode ser obtida subtraindo a quantidade de *prótons* (Z) da massa atômica (A)

O número atômico (Z) corresponde a quantidade de *prótons* no núcleo, e normalmente equivale a quantidade de *elétrons* na nuvem eletrônica que rodeia o núcleo.

Isótopos

Table of Isotopes (1999)

Isótopos

		8	O -21879* -18295* -11856* -2 15.9994 0.078%	O12 0.40 MeV 0+	O13 8.58 ms (3/2-) ECp	O14 70.606 s 0+ EC	O15 122.24 s 1/2- EC	O16 0+ 99.762	O17 5/2+ 0.038	O18 0+ 0.200	O19 26.91 s 5/2+ β	O20 13.51 s 0+ β·	O21 3.42 s (1/2,3/2,5/2)+ β·	O2: 2.25 0+ β·
	7	N -210.00* -195.79* -146.94* ±1±2±3+4+5 14.00674 0.0102%	N10	N11 740 keV 1/2+ P	N12 11.000 ms 1+ EC3α	N13 9.965 m 1/2- EC	N14 1+ 99.634	N15 1/2- 0.366	N16 7.13 s 2- βα	N17 4.173 s 1/2- β·n	N18 624 ms 1- βn,β·α,	N19 0.304 s (1/2-) βn	N20 100 ms	N2: 85 m
6	C 44921 36424 +2+4-4 12.0107 0.033%	C8 230 keV 0+	C9 126.5 ms (3/2-) ECp,ECp2α	C10 19.255 s 0+	C11 20.39 m 3/2- EC	C12 0+ 98.90	C13 1/2- 1.10	C14 5730 y 0+ β·	C15 2,449 s 1/2+ β	C16 0.747 s 0+ β·n	C17 193 ms βn	C18 95 ms 0+ βn	C19 46 ms βn	C20 14 m 0+ β·n

Isótopos

Element	Mass number	Mass (Da) ^a	Abundance (atom%) ^b	Element	Mass number	Mass (Da) ^a	Abundance (atom%) ^b
Proton	1	1.007 276 467	_	Cl	35	34.968 85	75.78
Neutron	1	1.008 664 916	_		37	36.965 90	24.22
Electron	_	0.000 548 580	_	Ar	36	35.967 55	0.336
Н	1	1.007 825	99.988		38	37.962 73	0.063
	2	2.014 10	0.012		40	39.962 38	99.600
В	10	10.012 94	19.9	Fe	54	53.939 61	5.845
	11	11.009 31	80.1		56	55.934 94	91.754
С	12	12(exact)	98.93		57	56.935 40	2.119
	13	13.003 35	1.07		58	57.933 28	0.282
N	14	14.003 07	99.632	Br	79	78.918 34	50.69
	15	15.000 11	0.368		81	80.916 29	49.31
O	16	15.994 91	99.757	L	127	126.904 47	100
	17	16.999 13	0.038	Hg	196	195.965 81	0.15
	18	17.999 16	0.205		198	197.966 75	9.97
F	19	18.998 40	100		199	198.968 26	16.87
Si	28	27.976 93	92.230		200	199.968 31	23.10
	29	28.976 49	4.683		201	200.970 29	13.18
	30	29.973 77	3.087		202	201.970 63	29.86
P	31	30.973 76	100		204	203.973 48	6.87
S	32	31.972 07	94.93	Pb	204	203.973 03	1.4
	33	32.971 46	0.76		206	205.974 45	24.1
	34	33.967 87	4.29		207	206.975 88	22.1
	36	35.967 08	0.02		208	207.976 64	52.4

UFRJ

Espectro de Massas

Espectrômetro de Massas

Espectrômetro de Massas

$$\frac{1}{2}mv^{2} = zeV \Rightarrow v = \sqrt{\frac{2zeV}{m}}$$
Kinetic energy (v = velocity)

Potential energy

$$\frac{mv^2}{r} = zevB \Rightarrow v = \frac{zeBr}{m}$$
Centripetal force Magnetic force

Magnetic force

$$\frac{zeBr}{m} = \sqrt{\frac{2zeV}{m}} \implies \frac{m}{z} = \frac{eB^2r^2}{2V}$$

Espectro de Massas

lonização eletrônica

Ionização

M +
$$e^- \rightarrow M^{+ \cdot}$$
 + $e^- + e^-$
70 eV Molecular ion ~55 eV 0.1 eV

Espectro de massas

Espectro de massas

Pico base

É o pico mais intenso do espectro

Pico do íon molecular

É pequeno ou inexistente dependendo da molécula e do modo de ionização

Formação e íons

$$M + e^- \longrightarrow M^{\bullet +} + 2e^-$$

Ionização Eletrônica ou impacto eletrônico 70eV

Ionização Eletrônica ou impacto eletrônico 70eV

- Trabalha bem em moléculas em fase gasosa,
- Induz fragmentação extensiva na molécula
- Alta energia tende a fragmentar tudo

- Produz íons com pequeno excesso de energia
- Induz pouca fragmentação na molécula
- Espectro apresenta poucos fragmentos
- Técnica complementar à El
- Gás contendo próton se choca com Molécula (M)
- Se a afinidade do Gás é menor que a afinidade da molécula temos MH+, PA(G)<PA(M)
- Gases comumente utilizados são Metano (5.7eV), isobutano(8,5eV) e amônia(9.0eV)

UFRJ

UFRJ

Formação de Adutos

$$MH^{+} + M \longrightarrow (2M + H)^{+}$$

 $F^{+} + M \longrightarrow (F + M)^{+}$

O plasma é responsável pela formação da associação de íons, também conhecidos como adutos

Formação de Adutos

MW=58

Mistura de dois compostos 261 e 270

Transferência de carga

$$Xe + e^{-} \longrightarrow Xe^{\bullet +} + 2e^{-}$$
 $Xe^{\bullet +} + M \longrightarrow M^{\bullet +} + Xe^{-}$

Ionização Química Metano

$$M + CH5+ \longrightarrow MH+ + CH4$$

$$RH + CH5+ \longrightarrow R+ + CH4 + H2$$

$$M + CH3+ \longrightarrow (M + CH3)+$$

Ionização Química Isobutano

Ionização Química Amônia

$$NH_3^{\bullet+} + NH_3 \longrightarrow NH_4^+ + NH_2^{\bullet}$$
 $NH_4^+ + NH_3 \longrightarrow (NH_4 + NH_3)^+$

Generalizando

$$RNH_2 + NH_4^+ \longrightarrow RNH_3^+ + NH_3$$

Formação de íons negativos

$$AB + e^- \longrightarrow AB^{\bullet -}$$
 (associative resonance capture)

$$AB + e^- \longrightarrow A^{\bullet} + B^-$$
 (dissociative resonance capture)

$$AB + e^{-} \longrightarrow A^{+} + B^{-} + e^{-}$$
 (ion pair production)

$$N_{2}O + e^{-} \longrightarrow N_{2}O^{\bullet -}$$

$$N_{2}O^{\bullet -} \longrightarrow N_{2} + O^{\bullet -}$$

$$O^{\bullet -} + CH_{4} \longrightarrow CH_{3}^{\bullet} + OH^{-}$$

Desorção ionização química

Field Ionization, Ionização por campo elétrico

8-12kV

Fast Atom Bombardment - FAB

$$Ar^{\bullet+}_{(rapid)} + Ar_{(slow)} \longrightarrow Ar^{\bullet+}_{(slow)} + Ar_{(rapid)}$$

Fast Atom Bombardment - FAB

Fast Atom Bombardment - FAB

Secondary ion mass spectrometry (SIMS)

Table 1.1 Some common lasers used for MALDI.

Laser	Wavelength	Energy (eV)	Pulse width
Nitrogen	337 nm	3.68	<1 ns to a few ns
Nd:YAG μ3	355 nm	3.49	5 ns
Nd:YAG μ4	266 nm	4.66	5 ns
Er:YAG	2.94 μm	0.42	85 ns
CO_2	10.6 μm	0.12	$100 \text{ns} + 1 \mu \text{s} \text{tail}$

 Table 1.2
 Some common UV-MALDI matrices.

Analyte	Matrix	Abbreviation
Peptides/proteins	α-Cyano-4-hydroxycinnamic acid	CHCA
	2,5-Dihydroxybenzoic acid (gentisic)	DHB
	3,5-Dimethoxy-4-hydroxycinnamic acid (sinapic)	SA
Oligonucleotides	Trihydroxyacetophenone	THAP
	3-Hydroxypicolinic acid	HPA
Carbohydrates	2,5-Dihydroxybenzoic acid	DHB
	α-Cyano-4-hydroxycinnamic acid	CHCA
	Trihydroxyacetophenone	THAP
Synthetic	Trans-3-indoleacrylic acid	IAA
polymers	Dithranol	DIT
	2,5-Dihydroxybenzoic acid	DHB
Organic molecules	2,5-Dihydroxybenzoic acid	DHB
Inorganic molecules	Trans-2-(3-(4-tert-Butylphenyl)-2methyl-2-propenyliedene)malononitrile	DCTB
Lipids	Dithranol	DIT

Termo spray

API – Ionização a pressão atmosferica

Eletronspray

Eletronspray

Isótopos ajudando no Espectro de Massas

Isótopos ajudando no Espectro de Massas

Tipos de espectrômetros

Tipos de espectrômetros

Quebras moleculares

